
@giltayar

How To Manage Quality in Shift
Left Environments

Gil Tayar (@giltayar)

October 2020 (Corona Times!)

This presentation: http://bit.ly/manage-quality-shift-left-testcon

http://bit.ly/manage-quality-shift-left-testcon

@giltayar

Or...

2

@giltayar

It’s just a shift to the left
And not a shift to the right
With your developers doing tests
Your quality is tight!

Let’s release our product again (and again and again…)
Let’s do the shift-left dance!

@giltayar@giltayar

About Me ● My developer experience goes all the way

back to the ‘80s.

● Am, was, and always will be a developer

● Testing the code I write is my passion

● Currently evangelist and architect @

Applitools

● We deliver Visual Testing tools:

If you’re serious about testing, checkout

Applitools Eyes

● Sometimes my arms bend back

● But the gum I like is coming back in style

@giltayar

@giltayar

What is Software Testing?
Software testing is an investigation conducted to provide

stakeholders with information about the quality of the product

or service under test.[1] Software testing can also provide an

objective, independent view of the software to allow the business

to appreciate and understand the risks of software

implementation. Test techniques include the process of executing

a program or application with the intent of finding software bugs

(errors or other defects)

 -- Wikipedia

@giltayar

What is Software Testing?

Testing is the art of ensuring that changes

in the code will not cause new bugs to

appear

@giltayar

Let’s talk about changes to code…
and fearing them

@giltayar

Egoprogramophobia

8

@giltayar@giltayar

Adding Code

@giltayar@giltayar

Fear of Adding Code

@giltayar@giltayar

Removing Code

@giltayar@giltayar

Fear of Removing Code

@giltayar@giltayar

Refactoring Code

@giltayar@giltayar

Fear of Refactoring

@giltayar

And developers do these things
day in, day out

@giltayar

How did developers manage quality
with so many frequent changes?

@giltayar

Answer: they didn’t

@giltayar

They threw it over the
wall to QA

@giltayar

Throwing over the wall begat...
● Long release times

● Integration time (aka “crunch time”)

● Automated testing

@giltayar

Let’s zoom in on
● Long release times

● Integration time (aka “crunch time”)

● Automated testing

@giltayar

Automated Testing

Testing was done “over the wall” ⇒ done by testers

@giltayar

Testers Have Access Only to the Final Product

QA QA
QA QA

@giltayar

These kinds of tests are E2E Tests

@giltayar

E2E Tests
● Extremely slow (seconds per test)

○ Think testing for many permutations (email validation)

● Difficult to test extreme conditions

○ Errors, load, etc.

● Need a staging environment

○ Expensive

○ Difficult to parallelize

● Flaky

○ Results are always “statistical”

@giltayar

But for a while it worked

@giltayar

https://www.picpedia.org/highway-signs/i/internet.html

@giltayar

We need to be agile

@giltayar

We need a short release cycle

@giltayar

We need to get rid of friction

@giltayar

And that QA <-> Dev cycle isn’t helping

Testers

Developers

@giltayar
31

@giltayar

We let the developers test

@giltayar

Developers Testers
33

@giltayar

Testers Developers
● We don’t have access to the code

● We can test the application only

from the outside,

● We’re OK with long suites of tests

● So we MUST do E2E tests

● We have access to the code

● We can test the application from

the inside

● We like fast

● Prefer new kinds of tests:

unit & integration tests

@giltayar

Shift Left!

@giltayar

I’m not a big fan of this way of looking at “shift left”

@giltayar

Because a good shift should be qualitative,
not quantitative

@giltayar

“Shift left” should
change the way
development and
deployment are done

38

@giltayar

“Shift left” means

Testing should become part of the development process

@giltayar

This means that

1. Developers should write tests

for every piece of code they write

@giltayar

And so

2. Every push

should be ready for deployment

@giltayar

1. Developers should write
tests for all code they write

@giltayar

This is the quantitative part of “shift left”

@giltayar

Developers write unit tests!
● Code that tests

○ A class

○ A function

○ A module

○ A UI component

@giltayar

And that’s where most developers stop

@giltayar

But most of
our code is
glue

@giltayar

And many times the units work, but...

@giltayar

So they write integration tests!
● Testing a set of units functioning together

● Testing a whole frontend app, without the backend

● Testing a whole microservice, without the other

microservices

@giltayar

What about the visual aspects?

@giltayar

Visual Testing
● Testing also means testing your CSS and HTML

● Functionality can fail from time to time, but if the visuals fail, the

customer notices

● A frontend developer thing.

○ Can be tested separately from the backend

@giltayar

But what about the whole app?
Does it function well together?

51

@giltayar

End to End Tests (E2E)

1. Deploy the application to a testing environment

a. As similar as possible to production

2. Write a test that automates a browser/mobile device

a. Just like a user would

52

@giltayar

Is E2E Practical?
● Very slow and flaky

● Difficult to reproduce production

● Microservice environments, E2E is a fractal, and usually impossible in

full

○ The only place to truly test a huge environment is in production! 😱

53

@giltayar

Guidelines for Developer Testing

@giltayar

Don’t Do Just Unit Testing
● Developers should own all of their tests

● Including the end to end

● Don’t leave it to QA

● If you have QA, ensure that they get a working product

● Choose the testing school based on your likes

@giltayar

There are Three Main Schools of Testing

@giltayar

Unit

Integration

E2E
The “Pyramid” School

@giltayar

The “Diamond” School

Unit

Integration

E2E

@giltayar

Hexagonal (Ports & Adapters) Architecture

@giltayar

Unit

Integration

E2E
The Pyramid of Testing

S
low

ness

Flakiness

C
onfidence

@giltayar

Unit

Integration

E2E
The Pyramid of Testing

Emphasize testing
units independently
using mocking

S
peed

Fl
ak

in
es

s

C
on

fid
en

ce

@giltayar

The Diamond of Testing

Unit

Integration

E2E
S

peed

Fl
ak

in
es

s

C
on

fid
en

ce

Emphasize testing as
many units together
as possible, without
sacrificing speed

@giltayar

Which is better?

@giltayar

It’s a
Religion!

64

@giltayar

Commonalities
● The need for speed

● Few E2E tests

● Test in all layers of the code

@giltayar

Let’s continue with the guidelines...

@giltayar

There are fanatics out there
● Listen to them

● But don’t listen to their fanaticism

● Choose your own path

● Choose your own testing strategy

@giltayar

It doesn’t have to be TDD
● It could be, if you like it

● But it doesn’t have to be

● I don’t use it

● But some of the best developers I know do

@giltayar

Not too many
● Don’t go for 100% coverage. It’s a myth

● Too many tests are a problem

● Enough tests to abolish your fear of deployment

*

,

but no more!

* Egoprogramophobia

@giltayar

How Do I Know I
Wrote Enough
Tests?

The Shakometer

@giltayar

Tests grow with time
● Don’t try to write all the tests at once

● Let your production show you where to add tests

● For every bug in production, add a test

@giltayar

Test manually as little as possible
● Check the features through tests

● Forces them to write tests

● More difficult with frontend code, but still possible

@giltayar

No “Big Project”
● “Yeah! We’re gonna work for a month and write all the

tests!”

● No. Just No.

● Start small, and let it grow with time

● Ensure most new code is tested

● It’s not a sprint. It’s a marathon

● (Oh, and start with one big end to end test)

@giltayar

2. Every push should be
ready for deployment

@giltayar
75

@giltayar

The QA Gateway Must Die

@giltayar

Treat every developer’s push
as if it was meant for production

@giltayar

Safety Nets

78

@giltayar

How do we do that?
● Only one (“master”) branch

○ Or short-lived branches

● Small deltas

○ Big commits should be taboo

● Use feature flags

● Run a build+test (CI) process on every push

● Deploy constantly (CD) 😱

@giltayar

But to do that,
you need developers to write tests

@giltayar

This is where “shift left” ends
and where the qualitative change happens

@giltayar

Small deltas, coupled with developer tests
⇒ less bugs

@giltayar

Why?
● Developers don’t ignore their own test failures

● When a bug does pass through the tests, they can immediately

figure out what caused it

○ Unit/Integration tests are much better than E2E

● Developers refactor more, and clean code means less bugs

@giltayar

Small deltas + developer tests
⇒ true agility

@giltayar

Why?
● Less friction ⇒

more responsive to changes

● Less friction ⇒

less MTTR ⇒

less time developers spend on production bugs

@giltayar

The Role of Testers

@giltayar

In this wonderful world of “shift left”
what is the role of testers?

@giltayar

When not shifting left
● Developers that don’t shift left are relying on testers to find their

regression bugs for them

● Testers are so busy dealing with making a non-working product

work, they don’t have time to do their real job:

Ensuring the product is good

@giltayar

Or, to put it bluntly

When developers deliver a working product to testers,

then testers can do the job they were meant to—Quality

Assurance—and not covering the developer’s a**es

@giltayar

This means
● Mentoring

● Pre-deployment smoke tests

● Manual testing in production

● Exploratory testing

● UX testing

● Really difficult E2E tests

● (and the list goes on and on…)

@giltayar

In Summary

@giltayar

Shift left quantitatively: shifting tests to developers
● Developers have the advantage of access to the code

● Test all layers: unit, integration, e2e

● As few e2e as possible

● The shakometer test

@giltayar

Shift left qualitatively: rapid, small-delta releases
● One master branch, and only short-lived branches

● Master branch should always be ready for production

● Test each push automatically using developer tests

● Less friction ⇒ more agile

@giltayar

Shift left: testers can do what they were
supposed to do—make the product better

@giltayar

Thank You
Gil Tayar (@giltayar)

This presentation: http://bit.ly/manage-quality-shift-left-testcon

http://bit.ly/manage-quality-shift-left-testcon

