
ELIAS NOGUEIRA
@eliasnogueira

THE STACK
LANGUAGE TESTING INFRADATA GENERATION

javafaker

LOG & REPORTS

Allure

BASIC ITEMS FOR A TEST ARCHITECTURE
with focus on web automation

BASE ARCHITECTURE
• Clean Architecture
• Design Pattern
• Testing Patterns

PAGE OBJECT MODEL
• Page Objects
• Page Factory
• Abstraction
• Waiting Strategy

LOGS AND REPORTS
• Exception logs
• General reports
• Evidence

DATA GENERATION
• Fake
• Static creation
• Dynamic creation

PARALLEL EXECUTION
• Infrastructure
• Containers

PIPELINE
• Execution strategy

an abstract class that will take care of
commons actions in your automated
tests

FACTORY the Design Pattern to create, in our case,
browser instances

LISTENER
a non-intrusive way to know what is
happening during the test execution

BASE TEST

BASE ARCHITECTURE
to apply DRY and KISS

CONFIG
a way to manage the configuration
files

Smart use of inheritance
• test inherits common test actions

One test case per class
• provide an easy way to add more tests
• ease division of tests in suites

BASE TEST
CLASS TEST 1

TEST 2

TEST N

• browser initialization/close
• open/close database, logs …
• connect/disconnect servers
• login/logout app

BASE TEST CLASS

extends

Apply Factory Design Pattern will help us to create a browser instance and
make easy the parallel execution in many environments.

BROWSER FACTORY

CHROME FIREFOX EDGE

FACTORY CLASS

SAFARI

Using TestNG we can use some listeners that allow modifying (or just watch) the test
behaviors. Helpful o watch the test lifecycle and do something.

LISTENERS

MY LISTENER

• test start
• test finish
• on test fail
• on test skipped
• on start
• on finish
• on success

TEST 1

@MyTestListener

TEST 2

@MyTestListener

TEST N

@MyTestListener

But the best approach is to add the listener to the Base Test class, so all the tests that extend
this class will have the listener.

LISTENERS

MY LISTENER

• test start
• test finish
• on test fail
• on test skipped
• on start
• on finish
• on success

TEST 1

TEST 2

TEST N

BASE TEST
CLASS

@MyTestListener

There are many ways to create a configuration management with different configuration file
types.

We must try to avoid:
• Call multiple times the file (should be a singleton)
• Provide a way to load multiples files based on your requirements

CONFIGURATION MANAGEMENT

CONFIGURATION MANAGEMENT

CONFIG MGMT MY CONFIG 1

MY CONFIG 2

MY CONFIG 3

Should be singleton

There are many ways to create a configuration management with different configuration file
types.

We must try to avoid:
• Call multiple times the file (should be a singleton)
• Provide a way to load multiples files based on your requirements

way to add more readability
service class

LOAD
STRATEGY

make the code wait for async
executions

FLUENT
INTERFACE

enable you to create tests in a
fluent way

PAGE FACTORY

PAGE OBJECTS MODEL
more maintainability and readability

PAGE OBJECTS

Page Object is a class that serves as an interface to a page of your web page.
The class provides methods to do page actions.
Tests will use these methods.

Image from
https://martinfowler.com/bliki/PageObject.html

PAGE OBJECTS

SEARCH PAGE FLIGHT SELECTION PAGE PAYMENT PAGE

Let’s say we have to test an application that sells flight tickets.
We would have those 3 pages.

PAGE OBJECTS

PAGE OBJECT
FLIGHT SELECTION

PAGE OBJECT SEARCH PAGE OBJECT
PAYMENT

SEARCH PAGE FLIGHT SELECTION PAGE PAYMENT PAGE

We will create a class for each page and add all the interactions we
want to do with it. It’s called a Page Object.

PAGE OBJECTS

PAGE OBJECT
FLIGHT SELECTION

PAGE OBJECT SEARCH PAGE OBJECT
PAYMENT

SEARCH PAGE FLIGHT SELECTION PAGE PAYMENT PAGE

SUCCESSFUL BOOK
TEST

For a successful test, we would consume those 3 Page
Objects.

PAGE OBJECTS

PAGE OBJECT
FLIGHT SELECTION

PAGE OBJECT SEARCH PAGE OBJECT
PAYMENT

INVALID DATE
TEST

SEARCH PAGE FLIGHT SELECTION PAGE PAYMENT PAGE

For an invalid date test, we would consume only one
Page Object.

PAGE OBJECTS

PAGE OBJECT
FLIGHT SELECTION

PAGE OBJECT SEARCH PAGE OBJECT
PAYMENT

SEARCH PAGE FLIGHT SELECTION PAGE PAYMENT PAGE

PAYMENT PROBLEM
TEST

For a payment problem simulation test,
we would use those 3 Page Objects.

PAGE OBJECTS

PAGE OBJECT
FLIGHT SELECTION

PAGE OBJECT SEARCH PAGE OBJECT
PAYMENT

SEARCH PAGE FLIGHT SELECTION PAGE PAYMENT PAGE

PAYMENT PROBLEM
TEST

INVALID DATE
TEST

SUCCESSFUL BOOK
TEST

CHANGE

If the Frontend developer do some changes in the
Search Page that affects the tests, we just need to
change the Page Object for that page, not the tests.

LOAD STRATEGY

A Load Strategy is responsible for wait for a certain time by any event on the web page, most
of the time related to async requests (Ajax).

PAUSE

IMPLICITLY

any type of sleep that will pause
the execution

you won’t know, in your code witch
action will wait

EXPLICITLY

AJAX LOCATORthe best choice to use with
Page Factory strategy

with this strategy, you can see in the code
which element will take time

FLUENT INTERFACE

Creates a method chaining to perform a series of actions to make the code more readable and
easier to use.

@Test
public void testWithoutFluentInterface() {

GeneralMenuPage menu = new GeneralMenuPage();
menu.clickinExperience();
menu.clickInOurFleet();
menu.clickInSeatingCharts();

}

@Test
public void testWithFluentInterface() {

GeneralMenuPage menu = new GeneralMenuPage();
menu.clickinExperience().clickInOurFleet().clickInSeatingCharts();

}

know all the exceptions to solve the
problems root-cause

GENERAL
REPORTS

evidence and executive
reports

EXCEPTION
LOGS

LOGS AND REPORTS
because we need to know about any error

By using any log strategy, saving a log file, we can understand the common errors that
occurred during the test execution.

These errors can be of:
• assertion errors
• timeout exceptions
• locator exception
• an exception on your architecture

EXCEPTION LOGS

If you want to analyze test errors across teams a good
way is using Elasticsearch with Grafana/Kibana or using
Report Portal.

GENERAL REPORTS

Generate xUnit reports to attach on your CI/CD and, rapidly, see the test status.

GENERAL REPORTS

Create an executive report to provide information and evidence about the test
execution.

This report may contain screenshots when an error occurs to help to analyze the
root cause of a problem.

pass the responsibility of non-sensitive
data generation to a framework

STATIC/DYNAMIC
GENERATION

create sensitive data and put
under your control

FAKES

DATA GENERATION
solve one of the biggest problems

Ability to create an approach to generate non-sensitive data for your test without the
necessity to manually change the test data in each execution.

There’re a lot of tools to create this type of data.

FAKE GENERATION

Example with javafaker

Faker faker = new Faker(new Locale("pt-BR"));

faker.name().fullName();
faker.address().fullAddress();
faker.internet().emailAddress();
faker.business().creditCardNumber();
faker.date().birthday();

When the data cause different behaviors in your application.

STATIC / DYNAMIC GENERATION

A Static approach can be implemented with any kind of solution, like:
• Files

• CSV | JSON | TXT | YML
• Database
• Mock

A Dynamic approach can be created according to your context.
Used to remove the maintenance of test data

• Queries in a database
• Consume data from a static poll

run many tests at the same time
in a chosen target

GRID AND
AUTO-SCALE

using the proper containers, we can
speed up the test execution

PARALLELISM

PARALLEL EXECUTION
to speed up your test execution

maven-surefire-
plugin

Have an ability to control
how many threads we

need inside the pom.xml

Junit

Experimental classes in
JUnit 4 and 5

ParallelComputer and
ParallelExecution

ConfigurationStrategy

TestNG

Control the parallelism
thought the suites in any

level of tests (class,
methods, etc..)

Parallelism, under test, is the ability to perform the same test in
different conditions (browser, devices, etc...) or different tests at the
same time.

PARALLELISM

GRID SCHEMA

Node Windows Node MacOSX Node Linux

Test Script Hub

send
capabilities

understands the capabilities
and send to the proper node

WAYS TO CREATE A GRID

LOCAL
Uses machines inside an infrastructure.
Can be a bare-metal desktop or a virtual machine

CLOUD
Uses a cloud infrastructure platform to create
virtual machines

CONTAINERS
Uses containers (locally or cloud-based) to create the
infrastructure and support orchestration

CONTAINERS TO AUTO-SCALE

• Uses a custom container elgalu/selenium that provides:

• live Preview with VNC
• video recording
• dashboard

• automatic auto-scale containers based on the number of tests

CURRENTLY NOT BEING DEVELOPED ANYMORE IN ORDER TO SELENIUM GRID 4
ADOPTION

create a pipeline for any type
of test execution

DIVIDE ALL TYPES OF
EXECUTION

PIPELINE
make the execution process clear

FUNCTIONAL TEST

ACCEPTANCE TEST

SMOKE TEST

DIVIDE ALL TYPES OF EXECUTION

WEB PART IN THE PIPELINE

Most important tests from a
business perspective

Most used user scenarios

Assure that critical
functionalities works

THANK YOU!
https://github.com/eliasnogueira/public-speaking

