
Detox: tackling flakiness of
mobile automation
Viktorija Sujetaitė | Mobile QA Engineer

viktorijas@wix.com

React Native: high level intro

Automation Testing

Detox: Overview

Configuration

Detox Object

Device Object

Actions, Matchers, Expectations

Manual Synchronization

Demo

AGENDA

01

React Native: a high level intro

What is React Native?

Terminology
 Native – Developed for a specific platform.

 JS – Shared code between platforms.

 Components – UI elements provided by React Native or build on

demand.

 Bridge – Used by React Native to pass information between the

Native side and JS side and vice versa.

The Bridge

JavaScriptBridgeNative

User clicked a button in app:

User Action
Native button

handler

N -> JS
Handler logic

Handler response

+ UI rendering

instructions

N <- JSBuild Native

views

Problems in React Native
 Maturity – new technology;

 Documentation – it’s still in the making;

 No Platforms parity;

 No solid Navigation solution;

 Testing – native + JavaScript;

 The bridge – what should be allowed to go over it;

 Complex environment.

02

Automation testing

Types of automated tests

3 main types of automated tests:

 Unit tests;

 Mocked E2E;

 Production E2E.

Unit Tests

PROS CONS

Pure code oriented Pure code oriented

Easy to write + maintain Does not represent actual user flows

Improves code quality Does not reflect app quality

Find bugs easily

Mocked E2E

PROS CONS

Closer to code & product Hard to setup and write

Stable Gives limited confidence

Easy to maintain

Production E2E

PROS CONS

Real user experience Slow

Easy to setup Hard to maintain

Easy to write Less cost effective

High confidence Flaky

E2E Flakiness

Traditional method of dealing with flakiness is adding various
“sleep”

commands throughout the test.

Why?

To force a certain execution order.

03

Detox Overview

What is Detox?

Gray box End-to-End testing and automation library

for mobile apps.

Detox is...

 Cross Platform – iOS and Android;

 Made for CI;

 Test Runner Independent;

 Automatically Synchronized.

Black Box vs Gray Box

Black Box A method of testing stuff from the outside,

without knowing what’s going on internally.

Gray Box Allows the test framework to monitor the app

from the inside and actually synchronize

with it.

Gray Box Sync

wait

No

Yes
Is app idle ? Advance

Two Running Parts

 The mobile app itself

Running on simulator(–s);

 The test suite

Running on Node.js, outside of the app;

04

Detox Configuration

Device Configurations
• Defined in package.json file;

Param Details

binaryPath Relative path to the app due to be tested

type
Device type, available options

are ios.simulator, ios.none, android.emulator, and android.attached.

name
Device name, aligns to the device list available through xcrun simctl

list

build [optional] Build command (either xcodebuild, react-native run-ios, etc...)

Example:

"detox": {

...

"configurations": {

"ios.sim.debug": {

"binaryPath": "ios/build/Build/Products/Debug-iphonesimulator/example.app",

"build": "xcodebuild -project ios/example.xcodeproj -scheme example -configuration Debug

-sdk iphonesimulator -derivedDataPath ios/build",

"type": "ios.simulator",

"name": "iPhone 7 Plus"

}

}

}

Server and Test Runner
 Server configuration can be

specified generally or per specific

device configuration.

 Test Runner configuration is

Mocha by default, can define a

different one (e.g. Jest, AVA).

"detox": {
...
"session": {
"server": "ws://localhost:8099",
"sessionId": "YourProjectSessionId"

}
}

"detox": {
...
"test-runner": "jest"
"runner-config": "path/to/config.json"

}

Just Simply Run

detox test --configuration yourConfiguration

05

Detox Object

detox Object

 Globally available in every test file;

 4 methods:

 detox.init();

 detox.beforeEach();

 detox.afterEach();

 detox.cleanup();

detox.init()

 Reads configuration;

 Starts a server;

 Loads its expectation library;

 Starts a simulator.

const config = require('../package.json').detox;

before(
async () => {

await detox.init(config, {launchApp: false});
}

);

detox.beforeEach()

 Called at the start of every test.

declare function beforeEach(
testSummary: {
title: string;
fullName: string;
status: 'running’;

})

detox.afterEach()

 Called at the end of the test;

 Must return failed or passed value.

declare function afterEach(testSummary: {
title: string;
fullName: string;
status: 'failed' | 'passed';

})

detox.cleanup()

 Should be triggered when detox.afterEach() finishes;

 Phase where Detox server shuts down.

after(async () => {
await detox.cleanup();

})

06

Device Object

device Object

 Globally available in every test file;

 Enables control over attached device;

 18 different functions to mock real user experience.

device Object Functions

device.launchApp()

device.terminateApp()

device.sendToHome()

device.reloadReactNative()

device.installApp()

device.uninstallApp()

device.openURL(url)

device.sendUserNotification(params)

device.sendUserActivity(params)

device.setOrientation(orientation)

device.setLocation(lat, lon)

device.setURLBlacklist()

device.enableSynchronization()

device.disableSynchronization()

device.resetContentAndSettings()

device.getPlatform()

device.pressBack() Android Only

device.shake() iOS Only

device.launchApp()
Parameters to set:

new instance

set runtime permissions

add additional launch arguments

launch with notifications

launch with specific language

launch from a fresh installation

launch from URL

launch with user activity

disable touch indicators (iOS)

initialize the URL blacklist

device.launchApp()

await device.launchApp({
newInstance: true,
url: url,
languageAndLocale: {
language: locale, locale

},
permissions: {
calendar: 'Yes'

}
});

07

Actions, Matchers, Expectations

What are they for?
Matchers Actions Expectations

to specify

UI elements

to emulate

user behavior

to verify

element

behavior

Matchers 🔎

by.id()

by.text()

by.label()

by.type()

by.traits()

for more

uniqueness:

.withAncestor()

.withDescendant()

.and()

Sometimes it’s not that easy...

Advanced Matchers

await element(by.id('toggle')

.withAncestor(by.id('notification_list_item')

.withDescendant(by.text('Allow Notifications’).toExist();

Actions 👉

.tap()

.longPress()

.multiTap()

.tapAtPoint()

.typeText()

.replaceText()

.clearText()

.scroll()

.scrollTo()

.swipe()

Tapping

.tap()

.longPress()

.multiTap()

.tapAtPoint()

Typing

.typeText()

.replaceText()

.clearText()

Scroll & Swipe

.scroll()

.scrollTo()

.swipe()

Expectations 🚀
.toBeVisible()

.toBeNotVisible()

.toExist()

.toNotExist()

.toHaveText()

.toHaveLabel()

.toHaveId()

.toHaveValue()

08

Manual Synchronization

Synchronization

 EarlGrey / Espresso provides a synchronization mechanism;

 Tracks dispatch queue, operation queue, network, animations,

etc;

 Waits for app to be idle.

What if app does not become idle?

Disabling

 App is busy – does not reach

idle state;

 Usual use case – animated

elements;

 Disable before entering screen

with such element;

Enabling

 Enable when in idle screen;

 Resets with every new app

instance.

waitFor()⏱

 Manual sync;

 Must have a timeout;

 Use together with an expectation.

await waitFor(element(by.id('UniqueId204'))).toBeVisible().withTimeout(2000);

await expect(element(by.id('UniqueId204'))).toBeVisible();

Dem

o

Demo

Scenario:

 log into the app;

 join a site with Invite Code;

 verify site in Home tab;

 hide site from Home tab;

 unhide site;

 verify it’s visible.

Q&A

viktorijas@wix.com Detox @ GitHub | https://github.com/wix/detox

Join @ Slido.com with

#testcon2019

