
From Waterfall to Agile

Norwegian Labour and Welfare Administration (NAV)

Torstein Skarra

Test Centre of Excellence at NAV

NAV 3 years ago

19 000 ++ users internally

Millions of external users

3-400 systems

X no of platforms

500 + employees in IT

2-300 consultants

1/3 of national budget

Development based on

projects and suppliers

PLAN-BUILD-RUN

Waterfall

 Not an IT company

 Flexible capacity

 Play the market

Every system had a contract. Build and bugfix at fixed prices

NAVs mission is to execute governmental laws and directives

NAV is not an IT company

Complex rules – stupid behaviour

Simple rules – intelligent behaviour

What this meant for Test:

 Our job was at the end. A massive AT to control and verify

 Tester role was to detect errors

“Clever” contracts destroy agile

NAV is not an IT company

 Unique systems build them yourself

 Hire and build competence

 Strengthen community

 Avoid fixed price contracts

Learning and success factors

NAV is not an IT company

Truths to be killed: NAV is not an IT company

Testing is all about detecting bugs

 “Code is like a machine. You buy it and you run it forever...”

 Planning, coordination and testing handles complexity

What this meant for Test:

 Test managers was more like a PM

 Expertise in planning & coordination changes our focus

We buy code and work in projects

SW Projects

 Projects optimize on the project

 Projects are short sighted entities

 Projects focus on activities

 Projects isolate

What this meant for Test:

 Projects focus on roles, responsibilities and phases
– Thus the roles in test became highly defined and rigid

– It took the “thinking out of testing”

 Projects kill our integrity

How projects destroy agile

SW Projects

 The goal is not to handle complexity, but to reduce it

– “Two Pizza team”

– Long term ownership

– Broader skill set for testers

Learning and success factors

Truths to be killed: Projects works for SW delivery

Remedy for complexity is planning,
coordination and more testing

SW Projects

 Extensive AT and RT at end

 High cost accepted

 Economy of scale says

What this meant for Test and Test managers:

 ”Guardians of quality” and “all mighty toll gate”

 Test-methodology with roles, responsibilities and process

 Central unified function

AT and RT is vital for quality and risk reduction

Release size

 Risk = Consequence * Probability

 Took us 2 years to sell this logic

 Differentiate and distribute

What this meant for Test:

 Quality becomes everybody's concern

 We lost our role as guardians from errors and risk

 Trust testing performed by others (even automated tests)

R = C * P

Release size

 Think R = C * P

 Shared responsibility for quality

 Differentiate and distribute quality work

Learning and success factors

Truths to be killed: The target must be zero errors

Someone must be responsible for Q

Release size

 Release to P is risky and costly

 Formal handovers are good

 Separation of roles

What this meant for Test:

 Test represented a third party, a neutral quality worker

Handovers ensures quality

Continuous

 Connect with the users

 From building it right to building the right thing

 Continues for fast learning

 Formal handover are “waste”

What this meant for Test:

 Integrate with the team

 Shift left

 Shift right

 Continuous testing

Creating customer value every day

Continuous

 “I’m a test person” “I’m a quality person”

 Avoid internal handovers

– also within the team

 Shift left and right

Learning and success factors

Truths to be killed: Testing in itself ensures quality

Handover is a quality measure

Continuous

 NAV had ~30

 Compatibility

 70% of errors were false falses

What this meant for Test:

 Very competent in data and environment handling

 Compensated for test-dependencies and complexity

I need my own stable test environment!

Test environments

 Enforce the reduction

 Pain driven development

– Fewer code branches

– Stable code branches

– Smaller releases

What this meant for Test:

 70% less waste in testing

More or fewer test environments?

Test environments

 Reduce number of test environments

– Team owns the problem

– Support with skills and resources

Learning and success factors

Truths to be killed: Number of test environments is a
constraint in SW development

Test environments

 Legal contract is a game of rules

 Defined roles and routines

 Checklists and reporting

 Win or loose – us & them

What this meant for Test:

 Test became agents of distrust

Legal contract: a substitute for trust and good faith?

Trust

 Trust is essential to achieve high performance

 Identify and remove distrust-functions

 Praise mistakes

Trust is essential

Truths to be killed: You cannot trust a contractor

You cannot trust a programmer

Trust

 Unique services & systems = You’re an IT company

 SW projects kill agility

 Release small

 And continuously

 Few test environments

 Trust

Lessons learned at NAV

Summary

Our identity

The transformation

Transformation

Our home
The teamTCoE

Role of TCoE

Challenge the

organizationPerform functions in a process

Our skills “potatoe” and advisorSpecialist in test

We build productsWe are test! We are quality!

Our authority LowHigh

Trust Trust!Can we trust?Don’t trust!

Torstein Skarra

torsteinskarra

#testcon2019

