
Copyright © 2019 HashiCorp

InfraCoding with Terraform:
Writing Tests for
Infrastructure-as-Code
DevOpsPro 2019
Peter Souter
Sr. Technical Account Manager - HashiCorp

Introductions
Who is this bloke?

Sr. Technical Account Manager
Peter Souter

Team
Customer Success

Based in
London, UK

Started at HashiCorp…
February 2018

What are we here to talk about?

TestCon Europe 2019

TestCon Europe 2019

Infrastructure-as-code

Treating the tooling that
manages your infrastructure
with the same way you would

treat any other code.

1. Easy to regenerate from scratch

2. Code review and collaboration

3. Easier to conceptualise as a code model

4. Auditing and policies

5. Iteratively improve over time

6. Modularise, reuse and hide complexity

7. Testing

Qui bono?
Who benefits?

1. Easy to regenerate from scratch

2. Code review and collaboration

3. Easier to conceptualise as a code model

4. Auditing and policies

5. Iteratively improve over time

6. Modularise, reuse and hide complexity

7. Testing

Qui bono?
Who benefits?

“Why should we test our
infrastructure as code

anyways?”

“The concern of velocity loss of added testing is very much

worthwhile in my experience. It’s why we have a known, stable

configuration and deployment codebase and can move on to more

relevant business problems. In their absence, I’ve without

exception had to firefight tooling, silent regressions, and human

error burning out teams and reducing confidence in automation

from across teams. Infrastructure as code without testing to me

is self-sabotage”

- Devon Kim, @djk29a, HashiConf 2019 Slack

https://twitter.com/djk29a

https://martinfowler.com/articles/practical-test-pyramid.html

https://martinfowler.com/articles/practical-test-pyramid.html

The terraform seemed to
generate the environment
correctly last time I tried…
meh, ship it!

The most simple “tests”: linting and
compilation checks

terraform validate

TERMINAL

$ terraform validate

Error: Unsupported block type

 on main.tf line 30, in resource "aws_instance" "foobar":

 30: tags {

Blocks of type "tags" are not expected here. Did you mean to define

argument "tags"? If so, use the equals sign to assign it a value.

tflint
TERMINAL

$ tflint

1 issue(s) found:

Error: instance_type is not a valid value (aws_instance_invalid_type)

 on main.tf line 28:

 28: instance_type = "t9.micro"

https://github.com/wata727/tflint

https://github.com/wata727/tflint

Ok, so let's start with unit tests for
our Terraform code

Acceptance tests make sure that
you're building the right thing

Unit tests make sure that you're
building the thing right

https://stackoverflow.com/questions/4139095/unit-tests-vs-acceptance-tests

https://stackoverflow.com/questions/4139095/unit-tests-vs-acceptance-tests

Are these really unit tests?

Are these really acceptance tests?

Some disagreement if these are
“real” unit tests...

The only “real” Terraform unit test...
CODE EDITOR

func TestValidateCloudWatchDashboardName(t *testing.T) {
 validNames := []string{
 "HelloWorl_d",
 "hello-world",
 "hello-world-012345",
 }
 for _, v := range validNames {
 _, errors := validateCloudWatchDashboardName(v, "name")
 if len(errors) != 0 {
 t.Fatalf("%q should be a valid CloudWatch dashboard name: %q", v, errors)
 }
 }

 invalidNames := []string{
 "special@character",
 "slash/in-the-middle",
 "dot.in-the-middle",
 strings.Repeat("W", 256), // > 255
 }
 for _, v := range invalidNames {
 _, errors := validateCloudWatchDashboardName(v, "name")
 if len(errors) == 0 {
 t.Fatalf("%q should be an invalid CloudWatch dashboard name", v)
 }
 }
}

So let's use some
different terms to be clearer

CODE EDITOR

resource "aws_instance" "foobar" {

 ami = "ami-0fab23d0250b9a47e"

 instance_type = "t1.micro"

 tags = {

 Name = "foobar"

 DemoDate = "14-October-2019"

 }

}

CODE EDITOR

{

 "version": 4,

 "terraform_version": "0.12.6",

 "serial": 6,

 "lineage": "4f59e0b7-698d-a0b9-50f6-3c31b5090200",

 "outputs": {},

 "resources": [

 {

 "mode": "managed",

 "type": "aws_instance",

 "name": "foobar",

 "provider": "provider.aws"

 "instances": [

 {

 "schema_version": 1,

 "attributes": {

 "ami": "ami-03ef731cc103c9f09",

 "associate_public_ip_address": true,

Terraform Code Terraform State

CODE EDITOR

resource "aws_instance" "foobar" {

 ami = "ami-0fab23d0250b9a47e"

 instance_type = "t1.micro"

 tags = {

 Name = "foobar"

 DemoDate = "14-October-2019"

 }

}

CODE EDITOR

{

 "version": 4,

 "terraform_version": "0.12.6",

 "serial": 6,

 "lineage": "4f59e0b7-698d-a0b9-50f6-3c31b5090200",

 "outputs": {},

 "resources": [

 {

 "mode": "managed",

 "type": "aws_instance",

 "name": "foobar",

 "provider": "provider.aws"

 "instances": [

 {

 "schema_version": 1,

 "attributes": {

 "ami": "ami-03ef731cc103c9f09",

 "associate_public_ip_address": true,

Code testing State testing

Code Testing

State
Testing

Integration
Testing

Code Testing

clarity
https://github.com/xchapter7x/clarity/tree

▪ Self-contained binary

▪ Gherkin style features

▪ Behaviour-Driven Development

▪ Parses HCL for running its checks

▪ Provides its own Terraform specific

matchers

https://github.com/xchapter7x/clarity/tree

clarity example
TERMINAL

$ clarity single_instance.feature

Feature: Single Instance in AWS

 Scenario: Creation of a single AWS micro instance # single_instance.feature:3

 Given Terraform # terraform.go:76 -> *Match

 And a "aws_instance" of type "resource" # terraform.go:242 -> *Match

 Then attribute " instance_type" equals "t1.micro" # terraform.go:351 -> *Match

 And it occurs exactly 1 times # terraform.go:489 -> *Match

1 scenarios (1 passed)

4 steps (4 passed)

1.613589ms

terraform-compliance
https://github.com/eerkunt/terraform-compliance

▪ Python CLI application

▪ Gherkin style features

▪ Behaviour-Driven Development

▪ Parses plan outputs for it’s checks

▪ Provides its own Terraform specific

matchers

https://github.com/eerkunt/terraform-compliance

terraform-compliance example
TERMINAL

$ terraform-compliance -p plan.out -f terraform_compliance/
terraform-compliance v1.0.51 initiated
 Scenario Outline: Ensure that specific tags are defined
 Given I have resource that supports tags defined
 When it contains tags
 Then it must contain <tags>
 And its value must match the "<value>" regex

 Examples:
 | tags | value |
 | Name | .+ |

1 features (1 passed)
1 scenarios (1 passed)
4 steps (4 passed)
Run 1570975178 finished within a moment

terraform_validate
https://github.com/elmundio87/terraform_validate

▪ Written as Python

▪ Standard unit testing

▪ Parses HCL for it’s checks

▪ Provides it’s own Terraform

specific matchers

https://github.com/elmundio87/terraform_validate

terraform_validate example
TERMINAL

$ python3 test/*.py
+ terraform_validate
==
FAIL: test_tags (__main__.TestResources)
Checks resources for required tags.
--
Traceback (most recent call last):
 File "test/terraform_validate_tests.py", line 27, in test_tags
 should_have_properties(required_tags)
 File
"/usr/local/lib/python3.7/site-packages/terraform_validate/terraform_validate.py",
line 207, in should_have_properties
 raise AssertionError("\n".join(sorted(errors)))
AssertionError: [aws_instance.foobar.tags] should have property: 'Date'

--
Ran 1 test in 0.031s

FAILED (failures=1)

Don’t just write tautological unit
tests, test the edge cases

A unit tests is for the logic you have
written, not to test the language

Red
Green

Refactor

🚨
Live

Demo
Warning!
🚨

Pros

Fast to run

Easy to write

No environment or

credentials required

Cons

Doesn’t test actual outcome

Code
Testing

The Future: Core Unit Testing?
https://github.com/hashicorp/terraform/issues/21628

https://github.com/hashicorp/terraform/issues/21628

Possibly… but we have a big backlog!

State Testing

Terraform Testing SDK
http://github.com/hashicorp/terraform-plugin-sdk/helper/acctest

▪ Used for acceptance tests

for Terraform providers

▪ Written in Golang

▪ Helper methods for

validating state

▪ Dev focused

http://github.com/hashicorp/terraform-plugin-sdk/helper/acctest

Terraform Testing SDK example
CODE EDITOR

 resource.ParallelTest(t, resource.TestCase{

 PreCheck: func() { testAccPreCheck(t) },

 IDRefreshName: "aws_instance.foo",

 Providers: testAccProviders,

 CheckDestroy: testAccCheckInstanceDestroy,

 Steps: []resource.TestStep{

 {

 Config: testAccInstanceConfig_pre(rInt),

 Check: func(*terraform.State) error {

 conn := testAccProvider.Meta().(*AWSClient).ec2conn

 var err error

 vol, err = conn.CreateVolume(&ec2.CreateVolumeInput{

 AvailabilityZone: aws.String("us-west-2a"),

 Size: aws.Int64(int64(5)),

 })

Pull-request acceptance tests for Azure Provider

Full Suite example for Azure:

Full Suite example for Azure:

terratest
https://github.com/gruntwork-io/terratest

▪ Full acceptance framework for

Terraform

▪ Developed by Gruntworks

▪ Used to test large module

deployments

▪ Written in Golang

▪ Helper methods for validating

state

https://github.com/gruntwork-io/terratest

At Gruntwork we test dozens of modules with terratest. We have

hooks to CircleCI to run tests on each commit. For us, the ROI is

huge - we've caught many regressions & problems thanks to

the tests.
It can definitely result in long test times. In some of our larger

repos, test can take 45-60 minutes. What I normally do is

add/update a test, run just that test locally to make sure it's

working, then let the full suite run in CircleCI.

- Ben Whaley, Gruntworks, HashiConf 2019 Slack

terratest example
TERMINAL

$ go test -v test/terraform_basic_example_test.go
=== RUN TestTerraformAWSInstanceType
=== PAUSE TestTerraformAWSInstanceType
=== CONT TestTerraformAWSInstanceType
TestTerraformAWSInstanceType 2019-10-13T16:09:10+01:00 retry.go:72: terraform [init -upgrade=false]
TestTerraformAWSInstanceType 2019-10-13T16:09:10+01:00 command.go:87: Running command terraform with args
[init -upgrade=false]
TestTerraformAWSInstanceType 2019-10-13T16:09:21+01:00 command.go:158: aws_instance.foobar: Creating...
TestTerraformAWSInstanceType 2019-10-13T16:09:31+01:00 command.go:158: aws_instance.foobar: Still
creating... [10s elapsed]
TestTerraformAWSInstanceType 2019-10-13T16:09:41+01:00 command.go:158: aws_instance.foobar: Still
creating... [20s elapsed]
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158: aws_instance.foobar: Creation
complete after 21s [id=i-08d65b4371c14fc4e]
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158:
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158: Apply complete! Resources: 1
added, 0 changed, 0 destroyed.
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158:
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158: Outputs:
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158:
TestTerraformAWSInstanceType 2019-10-13T16:09:43+01:00 command.go:158: instance_type = t1.micro
ok command-line-arguments 84.607s

🚨
Live

Demo
Warning!
🚨

Cons

Slow

Can be Costly

Can interfere with real

infrastructure

Pros

End-to-end testing

Closest to real testing

Interacts with real APIs

State
Testing

Integration Testing

Code Testing

State
Testing

Integration
Testing

For me, the integration step is
for testing the steps outside of

Terraform’s direct control:
Provisioning

Provisioning is very hard to
model as state.

The tools that do it best are
config management tools

Configuration management tools install and

manage software on a machine that already

exists. Terraform is not a configuration

management tool, and it allows existing

tooling to focus on their strengths:

bootstrapping and initializing resources.

- https://www.terraform.io/intro/vs/chef-puppet.html

https://www.terraform.io/intro/vs/chef-puppet.html

kitchen-terraform
https://newcontext-oss.github.io/kitchen-terraform/

▪ Fork of the test-kitchen tool

▪ Written in Ruby

▪ Various drivers and plugins

▪ Framework for creating

infrastructure, then testing it

against spec tests

https://newcontext-oss.github.io/kitchen-terraform/

kitchen-terraform example
TERMINAL

-----> Starting Kitchen (v2.3.3)
-----> Setting up <default-ubuntu>...
 Finished setting up <default-ubuntu> (0m0.00s).
-----> Verifying <default-ubuntu>...
$$$$$$ Running command `terraform workspace select kitchen-terraform-default-ubuntu` in directory
/Users/psouter/projects/infracoding-with-terraform-testcon-2019
$$$$$$ Running command `terraform output -json` in directory
/Users/psouter/projects/infracoding-with-terraform-testcon-2019
DEPRECATION: InSpec Attributes are being renamed to InSpec Inputs to avoid confusion with Chef Attributes. Use
:inputs in your kitchen.yml verifier config instead of :attributes.
default: Verifying host 3.3.206.176

Profile: default
Version: (not specified)
Target: ssh://ubuntu@3.3.206.176:22

 ubuntu
 ✔ should eq "ubuntu"
 16.04
 ✔ should eq "16.04"

Test Summary: 2 successful, 0 failures, 0 skipped
 Finished verifying <default-ubuntu> (0m4.69s).
-----> Kitchen is finished. (0m5.54s)

🚨
Live

Demo
Warning!
🚨

Policy as Code and
Policy Testing

Every organisation has policies

Naming conventions, tagging,
price guides, legal bound

constraints etc.

If we can reflect these as code,
we get the same benefits we

get from infrastructure as
code

HashiCorp Sentinel
https://www.hashicorp.com/sentinel/

“An embeddable policy as code

framework to enable fine-grained,

logic-based policy decisions that can

be extended to source external

information to make decisions.”

https://www.hashicorp.com/sentinel/

TERMINAL

Sentinel example for Terraform
CODE EDITOR

import "tfplan"

main = rule {

 all tfplan.resources.aws_security_group as _, instances {

 all instances as _, sg {

 all sg.applied.egress as egress {

 egress.cidr_blocks not contains "0.0.0.0/0"

 }

 }

 }

}

🚨
Live

Demo
Warning
🚨

What have we learnt?

The benefits of testing IaC
Regardless of what tool you’re using, Infrastructure-as-code without testing
is “self-sabotage”

How to do code/unit testing for
Terraform
Allowing quick feedback loops and TDD

How to do state testing to test the
final state
Allowing you assurance that your Terraform final state reflects what you
expect

How to do integration testing to
test the next steps after terraform
Getting deeper testing for things outside of direct Terraform control

How to model organisational policy
as code

● InfraCoding with Terraform - Code Repo

https://github.com/petems/infracoding-with-terraform-testcon-2019

● Open sourcing Terratest: a swiss army knife for testing infrastructure code

https://blog.gruntwork.io/open-sourcing-terratest-a-swiss-army-knife-for-testing-infrast

ructure-code-5d883336fcd5

● About Kitchen-Terraform

https://newcontext-oss.github.io/kitchen-terraform/about.html

● Test Terraform modules in Azure by using Terratest

https://docs.microsoft.com/en-us/azure/terraform/terratest-in-terraform-modules

Would you like to know more?

https://github.com/petems/infracoding-with-terraform-testcon-2019
https://blog.gruntwork.io/open-sourcing-terratest-a-swiss-army-knife-for-testing-infrastructure-code-5d883336fcd5
https://blog.gruntwork.io/open-sourcing-terratest-a-swiss-army-knife-for-testing-infrastructure-code-5d883336fcd5
https://newcontext-oss.github.io/kitchen-terraform/about.html
https://docs.microsoft.com/en-us/azure/terraform/terratest-in-terraform-modules

Thank You
psouter@hashicorp.com

@petersouter
www.hashicorp.com

75

mailto:psouter@hashicorp.com
https://twitter.com/petersouter

