
CHAOS!
Breaking your systems to make them unbreakable
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Failures in complex systems 
require multiple contributing causes, 
each necessary but only jointly sufficient

John Allspaw (paraphrazing Richard Cook) 
http://j.mp/no-root-cause
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J A S O N  Y E E
• Te c h n i c a l  E v a n g e l i s t  
• C o n f e r e n c e  O r g a n i z e r  
   ( D e v O p s D a y s ,  D e l i v e r y C o n f )  

• Tr a v e l  H a c k e r  
• W h i s k e y  H u n t e r  
• P o k e m o n  Tr a i n e r  

Tw :  @ g i t b i s e c t  
E m :  j y e e @ d a t a d o g h q . c o m



• Learning from today—Shaping tomorrow 
• Deep technical talks 
• Engaging discussions

Use the code “EVENT” to get 10% off at deliveryconf.com



D ATA D O G
S a a S - b a s e d  o b s e r v a b i l i t y  
p l a t f o r m :  

• M e t r i c s  
• Tr a c e s  ( A P M )  
• L o g s  
• S y n t h e t i c s  

Tw :  @ d a t a d o g h q  

W e ’ r e  h i r i n g :  
j o b s . d a t a d o g h q . c o m

http://jobs.datadoghq.com


http://bit.ly/netflix-5-things
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Chaos Monkey



–Netflix Technology Blog, 2011 
http://bit.ly/netflix-chaos

“By running Chaos Monkey in the middle of a 
business day, in a carefully monitored environment 
with engineers standing by to address any problems, 
we can still learn the lessons about the weaknesses 
of our system, and build automatic recovery 
mechanisms to deal with them. 

So next time an instance fails at 3 am on a Sunday, 
we won’t even notice.”
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Don’t be a jerk!
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Game Days
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90 Minutes
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90 Minutes
30 minutes planning. 
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90 Minutes
30 minutes planning. 
50 minutes playing. 
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90 Minutes
30 minutes planning. 
50 minutes playing. 

10 minutes reporting.
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Before
• Schedule it.
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Before
• Schedule it. 
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Before
• Schedule it. 

• Pick tests. Start easy. 

• Write down what you expect to happen. 

• Write down your plan if things go wrong. 

• Share your document!
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During
• Staging -> Production (off-peak) -> Production (primetime)
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During
• Staging -> Production (off-peak) -> Production (primetime) 

• Announce start in group chat. 

• Maintain discussion in group chat. 

• Monitor for outages. 

• Run your test and take notes!
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After
• Create cards/tickets to track issues that need work.
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• Create cards/tickets to track issues that need work. 

• Write a summary & key lessons.
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After
• Create cards/tickets to track issues that need work. 

• Write a summary & key lessons. 

• Email to all of engineering. 

• Celebrate!
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Game Levels
0. Terminate the service. Block access to 1 dependency.
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Game Levels
0. Terminate the service. Block access to 1 dependency. 

1. Block access to all dependencies. 

2. Terminate the host. 

3. Degrade the environment. 
Monitor & alert on Latency, Errors, Traffic, & Saturation

@gitbisect



Game Levels
0. Terminate the service. Block access to 1 dependency. 

1. Block access to all dependencies. 

2. Terminate the host. 

3. Degrade the environment. 

4. Spike traffic.

@gitbisect



Game Levels
0. Terminate the service. Block access to 1 dependency. 

1. Block access to all dependencies. 

2. Terminate the host. 

3. Degrade the environment. 

4. Spike traffic. 

5. Terminate the region/cloud.
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Experiment time!
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Review

Share! 

Plan! 

Have fun!
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Additional Resources
• systemctl, kill, iptables
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Additional Resources
• systemctl, kill, iptables 

• Comcast - https://github.com/tylertreat/comcast 

• Vegeta - https://github.com/tsenart/vegeta 

• stress-ng
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Additional Resources
• Gremlin - https://www.gremlin.com/ 

• ChaosToolkit - https://chaostoolkit.org/
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Questions? sli.do!
jason.yee@datadoghq.com 
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