
CHAOS!
Breaking your systems to make them unbreakable

@gitbisect

Readiness Operability

@gitbisect

Failures in complex systems
require multiple contributing causes,
each necessary but only jointly sufficient

John Allspaw (paraphrazing Richard Cook)
http://j.mp/no-root-cause

@gitbisect

Readiness Operability

@gitbisect

J A S O N Y E E
• Te c h n i c a l E v a n g e l i s t
• C o n f e r e n c e O r g a n i z e r
 (D e v O p s D a y s , D e l i v e r y C o n f)

• Tr a v e l H a c k e r
• W h i s k e y H u n t e r
• P o k e m o n Tr a i n e r

Tw : @ g i t b i s e c t
E m : j y e e @ d a t a d o g h q . c o m

• Learning from today—Shaping tomorrow
• Deep technical talks
• Engaging discussions

Use the code “EVENT” to get 10% off at deliveryconf.com

D ATA D O G
S a a S - b a s e d o b s e r v a b i l i t y
p l a t f o r m :

• M e t r i c s
• Tr a c e s (A P M)
• L o g s
• S y n t h e t i c s

Tw : @ d a t a d o g h q

W e ’ r e h i r i n g :
j o b s . d a t a d o g h q . c o m

http://jobs.datadoghq.com

http://bit.ly/netflix-5-things

@gitbisect

Chaos Monkey

–Netflix Technology Blog, 2011
http://bit.ly/netflix-chaos

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored environment
with engineers standing by to address any problems,
we can still learn the lessons about the weaknesses
of our system, and build automatic recovery
mechanisms to deal with them.

So next time an instance fails at 3 am on a Sunday,
we won’t even notice.”

@gitbisect

http://bit.ly/netflix-chaos

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored environment
with engineers standing by to address any problems,
we can still learn the lessons about the weaknesses
of our system, and build automatic recovery
mechanisms to deal with them.

So next time an instance fails at 3 am on a Sunday,
we won’t even notice.”

–Netflix Technology Blog, 2011
http://bit.ly/netflix-chaos

@gitbisect

http://bit.ly/netflix-chaos

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored environment
with engineers standing by to address any problems,
we can still learn the lessons about the weaknesses
of our system, and build automatic recovery
mechanisms to deal with them.

So next time an instance fails at 3 am on a Sunday,
we won’t even notice.”

–Netflix Technology Blog, 2011
http://bit.ly/netflix-chaos

@gitbisect

http://bit.ly/netflix-chaos

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored environment
with engineers standing by to address any problems,
we can still learn the lessons about the weaknesses
of our system, and build automatic recovery
mechanisms to deal with them.

So next time an instance fails at 3 am on a Sunday,
we won’t even notice.”

–Netflix Technology Blog, 2011
http://bit.ly/netflix-chaos

@gitbisect

http://bit.ly/netflix-chaos

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored environment
with engineers standing by to address any problems,
we can still learn the lessons about the weaknesses
of our system, and build automatic recovery
mechanisms to deal with them.

So next time an instance fails at 3 am on a Sunday,
we won’t even notice.”

–Netflix Technology Blog, 2011
http://bit.ly/netflix-chaos

@gitbisect

http://bit.ly/netflix-chaos

Don’t be a jerk!

@gitbisect

Game Days

@gitbisect

90 Minutes

@gitbisect

90 Minutes
30 minutes planning.

@gitbisect

90 Minutes
30 minutes planning.
50 minutes playing.

@gitbisect

90 Minutes
30 minutes planning.
50 minutes playing.

10 minutes reporting.

@gitbisect

Before
• Schedule it.

Before
• Schedule it.

• Pick tests. Start easy.

@gitbisect

Before
• Schedule it.

• Pick tests. Start easy.

• Write down what you expect to happen.

@gitbisect

Before
• Schedule it.

• Pick tests. Start easy.

• Write down what you expect to happen.

• Write down your plan if things go wrong.

@gitbisect

Before
• Schedule it.

• Pick tests. Start easy.

• Write down what you expect to happen.

• Write down your plan if things go wrong.

• Share your document!

@gitbisect

During
• Staging -> Production (off-peak) -> Production (primetime)

@gitbisect

During
• Staging -> Production (off-peak) -> Production (primetime)

• Announce start in group chat.

During
• Staging -> Production (off-peak) -> Production (primetime)

• Announce start in group chat.

• Maintain discussion in group chat.

During
• Staging -> Production (off-peak) -> Production (primetime)

• Announce start in group chat.

• Maintain discussion in group chat.

• Monitor for outages.

@gitbisect

During
• Staging -> Production (off-peak) -> Production (primetime)

• Announce start in group chat.

• Maintain discussion in group chat.

• Monitor for outages.

• Run your test and take notes!

@gitbisect

After
• Create cards/tickets to track issues that need work.

@gitbisect

After
• Create cards/tickets to track issues that need work.

• Write a summary & key lessons.

@gitbisect

After
• Create cards/tickets to track issues that need work.

• Write a summary & key lessons.

• Email to all of engineering.

@gitbisect

After
• Create cards/tickets to track issues that need work.

• Write a summary & key lessons.

• Email to all of engineering.

• Celebrate!

@gitbisect

Game Levels
0. Terminate the service. Block access to 1 dependency.

@gitbisect

Game Levels
0. Terminate the service. Block access to 1 dependency.

1. Block access to all dependencies.

@gitbisect

Game Levels
0. Terminate the service. Block access to 1 dependency.

1. Block access to all dependencies.

2. Terminate the host.

@gitbisect

Game Levels
0. Terminate the service. Block access to 1 dependency.

1. Block access to all dependencies.

2. Terminate the host.

3. Degrade the environment.
Monitor & alert on Latency, Errors, Traffic, & Saturation

@gitbisect

Game Levels
0. Terminate the service. Block access to 1 dependency.

1. Block access to all dependencies.

2. Terminate the host.

3. Degrade the environment.

4. Spike traffic.

@gitbisect

Game Levels
0. Terminate the service. Block access to 1 dependency.

1. Block access to all dependencies.

2. Terminate the host.

3. Degrade the environment.

4. Spike traffic.

5. Terminate the region/cloud.

@gitbisect

Experiment time!

@gitbisect

Review

Share!

Plan!

Have fun!

@gitbisect

Additional Resources
• systemctl, kill, iptables

@gitbisect

Additional Resources
• systemctl, kill, iptables

• Comcast - https://github.com/tylertreat/comcast

@gitbisect

Additional Resources
• systemctl, kill, iptables

• Comcast - https://github.com/tylertreat/comcast

• Vegeta - https://github.com/tsenart/vegeta

@gitbisect

Additional Resources
• systemctl, kill, iptables

• Comcast - https://github.com/tylertreat/comcast

• Vegeta - https://github.com/tsenart/vegeta

• stress-ng

@gitbisect

Additional Resources
• Gremlin - https://www.gremlin.com/

• ChaosToolkit - https://chaostoolkit.org/

@gitbisect

Questions? sli.do!
jason.yee@datadoghq.com

@gitbisect

mailto:jason.yee@datadoghq.com

