
Measuring
Performance with
WebDriver

Laba diena!

Christian Bromann

Senior Lead
Software Engineer at

Sauce Labs

christian-bromann
@bromann

3034 kb

3.21 s
Is the average load of a webpage (Pingdom/2018)

of mobile site visits are abandoned if pages take longer than 3
seconds to load. (Study by DoubleClick owned by Google)

is the average web page size in 2018, trend: increasing
(https://speedcurve.com/blog/web-performance-page-bloat/)

53%

“How fast your website loads is critical but
often a completely ignored element in any
online business and that includes search

marketing and search engine optimisation.”
—Google

#perfmatters

“Performance stands out like a ton of
diamonds. Nonperformance can always

be explained away.”

—Harold S. Geneen.

Browser
Performance

How fast does my
application load ?

8

responseStart
-

fetchStart
=

time to first byte (TTFB)

9

First Paint
(FP)

First Contentful Paint
(FCP)

First Meaningful Paint
(FMP)

First Paint (FP)
first render to the screen

First Contentful Paint (FCP)
is triggered when any content is painted – i.e. something defined in the DOM

First Meaningful Paint (FMP)
measures how long it takes for the most meaningful content to be fully rendered on the site.

Time To Interactive (TTI)
number of seconds from the time the navigation started until the layout is stabilized

Time To
Interactive (TTI)

10

(Source: Google)

computes an overall score for how quickly the content
painted

Speed Index

Score Based

Other Metric
Types

Milestone Based

Describing a duration
between two events

Resource Based

Describing performance
based on a score

Describing certain
resource limits

Are all these
metrics
important?

Yes!

Mapping
Metrics to
User Experience!

Is it useful?
Has enough content rendered that users can
engage with it?

Did the navigation start successfully? Has the
server responded?

Is it happening?

Can users interact with the page, or is it still busy
loading?

Is it usable?

Are the interactions smooth and natural, free of lag and
jank?

Is it delightful?

?

?

?

?

https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics

14

“Fast forward to today and we see that
window.onload doesn’t reflect the user

perception as well as it once did.”

—Steve Souders

Browser
Tracing

How the browser knows
about all this?

17

18

Contains a list of events from different types that happened
during the capturing process, e.g.

Duration Events (B - begin, E - end)
Complete Events (x)
Instant Events (i)
Counter Events (C)
Sample events (P)
Metadata Events (M)
Memory Dump Events (V - global, v - process)
Other… (see Trace Event Format)

Trace data representations can be processed by a Trace
Viewer tool like DevTools or Catapult

{
 "name": "myName",
 "cat": "category.list",
 "ph": "B",
 "ts": 12345,
 "pid": 123,
 "tid": 456,
 "args": {
 "someArg": 1,
 "anotherArg": {
 "value": "my value"
 }
 }
}

Event Descriptions:

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit

{
 "pid": 41316,
 "tid": 775,
 "ts": 170385299237,
 "ph": "I",
 "cat": "devtools.timeline",
 "name": "UpdateCounters",
 "args": {
 "data": {
 "jsEventListeners": 31,
 "nodes": 4089,
 "documents": 9,

"jsHeapSizeUsed": 11140520
 }
 },
 "tts": 20811400,
 "s": "t"
}

{
 "pid": 579,
 "tid": 775,
 "ts": 170383426118,
 "ph": "O",
 "cat": "disabled-by-default-devtools.screenshot",
 "name": "Screenshot",
 "args": {
 "snapshot": "..."
 },
 "tts": 2879188825,
 "id": "0x1"
}

21

Google Lighthouse

22

WebDriver

How browser get
automated today?

24

const elem = $("#myElem")

elem.click()

Chromedriver
Geckodriver

IEDriver
EdgeDriver
SafariDriver

Appium
Selendroid

WebDriverAgent

HTTP

Selenium Grid

V

Webdriver.io

ChromedriverHTTP

browser.url("https://webdriver.io")

browser.startTracing()

WebSockets

WebSockets

WebdriverIO using @wdio/devtools-service

DEMO

Capture Performance Data
with WebdriverIO

Testing
Performance

Using Sauce Labs new
Performance Feature

const elem = $("#myElem")

elem.click()

Chromedriver
Geckodriver

IEDriver
EdgeDriver
SafariDriver

Appium
Selendroid

WebDriverAgent

HTTP

Selenium Grid

const elem = $("#myElem")

elem.click()

HTTP

Shift Testing To The Left

Development Staging Production

Performance in the Lab Performance in the Real World

Existing SolutionsExisting Solutions

SPEEDO

$ npm install -g speedo

Install it!

$ speedo run https://site.com

Run it!

https://saucelabs.com

DEMO

Capture Performance Data with
Speedo

import { remote } from 'webdriverio';

let browser

(async () => {
 browser = await remote({
 user: process.env.SAUCE_USERNAME,
 key: process.env.SAUCE_ACCESS_KEY,
 capabilities: {
 browserName: 'chrome',
 platformName: 'Windows 10',
 browserVersion: 'latest',
 'sauce:options': {
 extendedDebugging: true,
 capturePerformance: true,
 name: “Performance Test”
 }
 }
 })

 await browser.url('https://www.instagram.com/accounts/login')

 const username = await browser.$('input[name="username"]')
 await username.setValue('performancetestaccount')

 const password = await browser.$('input[name="password"]')
 await password.setValue('testpass')

 const submitBtn = await browser.$('button[type="submit"]')
 await submitBtn.click()

 await browser.deleteSession()
})().catch(async (e) => {
 console.error(e)
 await browser.deleteSession()
})

$ speedo analyze “Performance Test” \
 -p https://www.instagram.com/ \
 --all

Check Performance for
Instagram Login

https://www.instagram.com/

pipeline {
 agent none
 stages {
 stage('Linting') {
 ...
 }
 stage('Unit Tests') {
 ...
 }
 stage('Functional Tests') {
 ...
 }
 stage('Performance Tests') {
 agent {
 docker { image 'saucelabs/speedo' }
 }
 steps {
 sh 'speedo run https://google.com -u
${SAUCE_USERNAME} -k ${SAUCE_ACCESS_KEY} -b ${BUILD_NUMBER}'
 }
 }
 }
}

Ready For CI/CD
Speedo was build to run within your continuous integration pipeline!

variables:
 SPEEDO_IMAGE: saucelabs/speedo

stages:
 - lint
 - test
 - performance
 - deploy

...

run performance tests
performance:
 stage: performance
 image: $SPEEDO_IMAGE
 script:
 - speedo run https://google.com -u $SAUCE_USERNAME
-k $SAUCE_ACCESS_KEY -b $BUILD_NUMBER

...

 const submitBtn = await browser.$('button[type="submit"]')
 await submitBtn.click()

 const result = await browser.assertPerformance(
 'My Performance Test',

['speedIndex', 'timeToFirstInteractive'])

 expect(result.pass).toBe(true)

Test Performance within a WebDriver test

/session/:sessionId/sauce/ondemand/performance
 WebDriver Extension

JS Executor (Selenium Python)

driver.execute_script('sauce:performance', {“metrics”: [...]”})

/**
 * Test performance of hard page transition
 */
browser.url('https://postmates.com')
let result = await browser.assertPerformance(JOB_NAME, ['score'])
assert.equal(result.result, 'pass',
 'Performance test for opening main page did not pass')

/**
 * Test performance of soft page transition
 */
const username = await browser.$('#e2e-geosuggest-input')
await username.setValue('San Francisco')
const submitBtn = await browser.$('#e2e-go-button')
await submitBtn.click()

result = await browser.assertPerformance(JOB_NAME, ['score'])
assert.equal(result.result, 'pass',
 'Performance test for the feed did not pass')

Jankiness

The Browser
A JavaScript Powerplant

https://speedcurve.com/blog/javascript-growth

https://speedcurve.com/blog/javascript-growth/

https://discuss.httparchive.org/t/cpu-time-breakdown/1510

“Jank is any stuttering, juddering or just plain halting
that users see when a site or app isn't keeping up with
the refresh rate. Jank is the result of frames taking too
long for a browser to make, and it negatively impacts

your users and how they experience your site or app.”
—jankfree.org

Performance Best Practices

● Functional vs. Performance Testing
● Don’t worry about other browser / versions too much
● Keep it simple!
● Maintain one job name for one performance test
● Know what you want to test

○ Scoring based metrics are the best generalised metrics
○ Use others if you have more specific requirements

What to do and what not to do?!

Thanks!
Does anyone have any questions?

https://speakerdeck.com/christianbromann/automated-performance-testing-with-webdriver

christian@saucelabs.com

christian-bromann
@bromann

https://speakerdeck.com/christianbromann/automated-performance-testing-with-webdriver

