Deploying Security Testing Practice

by Artem Vasiuk

In testing since 2004
Test Manager in Danish company Scalepoint
From Ukraine. Live in Denmark

Love snowboarding

Why Security?

Increasing number of breaches
Numerous tools for detection and attacks
New area for personal development

High stakes due to GDPR

Source: https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

*::’ Cl&rﬁ?s"mg%mmwm home everything about blog data trainina books contact fYy & \N=Q
Latest
Blank
500p« Medio Laorom 090Came
Games CapitalOne L Rolz ShareThis Yinodams
ey Facebook |
2019 26,000,000 Dubsmash 420,000,000
T Indian D) (Rrerixl
Jobseekers
275,000,000 e
MyHeri‘age Newegg SiraHeolt
T . Urban
MBM W|"e| Acmmogs
i Company Tcketmaser B
S mm g " - - R (aso.m'om

~ Quorc

T
4

- - et e e
- ¥

) - 100,000,000

H VNV, VWV VWV

2017

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

The Beginning

Let’s do it! But what’s next step?
Should we do it or delegate to professionals?
How do we get time for it?

Can robots do the stuff for us?

The Situation

What is the driver?

e Management Decision

e Need Driven

T g /
= We need \

: —+~] | ==\ Security testing £

%

e Personal Initiative

e Career Opportunity

The Situation

How do you organise the process?

e One-man battle
e Team Work

e Corporate Goal

The Situation

Where do you focus?

e Secure Frameworks and Components
 Automated Testing Tools

e Professional Consultants

The Situation

When do you act?

 Non-Functional Testing of Features

* Design Review and Code Review

* Penetration Testing per Release

e Definition of Done

Can | help you?

OWASP.org

 Jop 10 Vulnerabilities

UWUHSP

Open Ueb Application
Security Project

e Testing Checklist
 App Sec Verification Standard (aka ASVS)

o Software Assurance Maturity Model (aka SAMM)

T10

A1:2017-
Injection

g W,

|

A2:2017-Broken
Authentication ‘

/

A3:2017-
Sensitive Data

Exposure
L Po J

A4:2017-XML
External

E
¥ ntities (XXE) .

A5:2017-Broken
Access Control (

- Y

A6:2017-Security
Misconfiguration

\ : _/
A7:2017-
Cross-Site
8 Scripting (XSS)
/

A8:2017- |

OWASP Top 10
Application Security Risks — 2017

Top 10 Vulnerabillities

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker's hostile data can trick the
interpreter into executing unintended commands or accessing data without proper authorization.

Application functions related to authentication and session management are often implemented
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users' identities temporarily or permanently.

Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra
protection, such as encryption at rest or in transit, and requires special precautions when
exchanged with the browser.

Many older or poorly configured XML processors evaluate external entity references within XML
documents. External entities can be used to disclose internal files using the file URI handler,
internal file shares, internal port scanning, remote code execution, and denial of service attacks.

Restrictions on what authenticated users are allowed to do are often not properly enforced.
Attackers can exploit these flaws to access unauthorized functionality and/or data, such as access
other users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure
default configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured
HTTP headers, and verbose error messages containing sensitive information. Not only must all
operating systems, frameworks, libraries, and applications be securely configured, but they must
be patched and upgraded in a timely fashion.

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user-supplied data using a
browser API that can create HTML or JavaScript. XSS allows attackers to execute scripts in the
victim's browser which can hijack user sessions, deface web sites, or redirect the user to
malicious sites.

Incariira dacarializatinn aflan laade tn ramata rada avaritinn Fuan if dacarializatinan flawe Aa nat

Testing Checklist

Testing for Reflected Cross site scripting (OTG-INPVAL-001)

Fage Liscussion Kead View source View history |o€diun

This article is part of the new OWASP Testing Guide v4.

Home
About OWASP Back to the OWASP Testing Guide v4 ToC:
Acknowledgements https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of Contentsi&
Advertising Back to the OWASP Testing Guide Project:
AppSec Events https://waw.owasp.org/index.php/OWASP_Testing Project®
Supporting Pariners
Books
Brand Resources [hide]
Chapters 1 Summary
Donate to OWASP 2 How to Test
D°V"'Tl°ads 2.1 Black Box testing
e 2.1.1 Example 1
Governance
I 2.1.2 Example 2
Initiatives
Mailing Lists 2.2 Bypass XSS filters
Membership 2.2.1 Example 3: Tag Attribute Value
Merchandise 2.2.2 Example 4: Different syntax or encoding
Presentations 2.2.3 Example 5: Bypassing non-recursive filtering
e 2.2.4 Example 6: Including external script
Project
T 2.25 Example 7- HTTP Parameter Pollution (HPP)
2.3 Gray Box testing
Refere»nf:f:‘ 3 Tools
Activities
Attacks 4 References
Code Snippets
Controls S §
ey umimary
How To Reflected Cross-site Scripting (XSS) occur when an attacker injects browser executable code within a single HTTP response. The injected attack is not stored within the application itself; it is non-persistent and only impacts users who open a maliciously crafted |i
e string is included as part of the crafted URI or HTTP parameters, improperly processed by the application, and returned to the victim.
NET Project
Principles
Technologies Reflected XSS are the most frequent type of XSS attacks found in the wild. Reflected XSS attacks are also known as non-persistent XSS attacks and, since the attack payload is delivered and executed via a single request and response, they are also referred to

Threat Agents
Vulnerabilities o . o i i
When a web application is vulnerable to this type of attack, it will pass unvalidated input sent through requests back to the client. The common modus operandi of the attack includes a design step, in which the attacker creates and tests an offending URI, a social

o her victims to load this URI on their browsers, and the eventual execution of the offending code using the victim's browser.

What links here
Related changes
Special pages Commonly the attacker's code is written in the Javascript language, but other scripting languages are also used, e.g., ActionScript and VBScript. Attackers typically leverage these vulnerabilities to install key loggers, steal victim cookies, perform clipboard theft, a

Printable version download links).
Permanent link

Page information
One of the primary difficulties in preventing XSS vulnerabilities is proper character encoding. In some cases, the web server or the web application could not be filtering some encodings of characters, so, for example, the web application might filter out "<script>",
simply includes another encoding of tags.

Cateqory Discussion Fead Vewsource View histoy |5 Q

Category:OWASP Application Security Verification Standard Project @ Heip

Ve Hama Downloads Acknowledgements Glossary ASVS Users Precedants-Interpredations Intamationalization Archive - Previous Version
About OWASP . .

toknowiegamirta ASVS V2 Authentication

fdvertising

=i [hice]

rand Aesaurces o . . .
1 V2: Authentication Verification Requirements

::lww 1.1 Control Objective
LNAntans
1.2 Security Verification Requirements
Dona‘e fc OWACP
1.3 References
Downloads
Fverts
Furding V2: Authentication Verification Requirements
Govamarce
Initiates Control Objective
ng L uthentication is the act of establishing, or confirming, something (or someone) as authentic, that is, that claims made by or about the thing are true. Ensure that a verified application satisfies the following high level requirements:
Mallng Liss Authentication is the act of establish f th) as authentic, that is, that cl de by or about the th true. Ensure that a verified application satisfies the foll high level t
Mamborsan
Merchandise « Verifies the digital identity of the sender of a communication.
Prosanations « Ensures that only those authorised are able to authenticate and credentials are transported in a secure manner.
Press
, Security Verification Requirements
Projects
Suppering Farnars # Description L1 L2 L3
Video
' 2.1 | Verify all pages and resources are protected by server-side authentication, except those specifically intended to be public. v v
Raterance 25 Verify that the application does not automatically fill in credentials — either as hidden fields, URL arguments, Ajax requests, or in forms, as this implies plain text, reversible or de-cryptable password storage. v
Activities) Random time limited nonces are acceptable as stand ins, such as to protect change password forms or forgot password forms.
Annoks
2.6 | Verify all authentication controls fail securely to ensure attackers cannot log in. v oY
Code Snippets
Controls 2.7 | Verify password entry fields allow, or encourage, the use of passphrases, and do not prevent long passphrases or highly complex passwords being entered. v vV
4
Glassary 2.8 | Verify all identity functions (e.g. forgot password, change password, change email, manage 2FA token, efc.) have the security controls, as the primary authentication mechanism (e.g. login form). v VoY
Fow Ta.. 2.9 | Verify that the changing password functionality includes the old password, the new password, and a password confirmation. v vV
Jaua Prozaoe 2.12 | Verify that all authentication decisions can be logged, without storing sensitive session identifiers or passwords. This should include requests with relevant metadata needed for security investigations. v |V
NET Progact
Princip ‘: 2.13 | Verify that account passwords are one way hashed with a salt, and there is sufficient work factor to defeat brute force and password hash recovery attacks. v |V
2.16 | Verify that all application data is transmitted over an encrypted channel (e.g. TLS). v o v

Verify that the forgotten password function and other recovery paths do not reveal the current password and that the new password is not sent in clear text to the user. A one time password reset link should be
used instead.

217

<
<

N A0 V\larifu that infarmatinn anlimearatinn ic nnat noaccihlae via Iamin nacowwnrd racat Ar farant acrcosrint fiinctinnalinyv v -/

SAMM Overview

Business Functions

Governance

Security Practices
Strategy & Education &
Metrics Guidance
Policy &

Compliance

Construction

SAMM

Software
Development

Security
Requirements

Threat
Assessment

Secure
Architecture

Verification Deployment

Design Security Environment
Review Testing Hardening
Code Vulnerability Operational
Review Management Enablement

Improve Efficiency

Automated Sec Scanning tools

Burp Suite, Zed Attack Proxy (ZAP), AppScan
SonarQube (Java, C#, JS... +DependencyChecker)

Security test data in Automated tests

Scanning Setup

L -

g ad §

Challenges

"Who would even hack us? People are nice!"

"We have firewall (https, kaspersky,) to protect us!”

"We have Michael. He is responsible for Security"
"I have no time for learning"
"Security is technical, so do it in your Technical backlog"

"Ok, ok...But let’s do release now and improve Security later"

* The Web Application Hacker's Handbook

e Kingpin: How One Hacker Took Over the

Billion-Dollar Cybercrime Underground

Lhe e, \pplic: lll()ll

Hacker's
I]dll(“)()()l\

HOW ONE HACKER TOOK OVER THE
BILLION-DOLLAR CYBERCRIME UNDERGROUND

>

KEVIN POULSEN,

SENIOR EDITOR, WIRED.COM

Pluralsight course

* "Hack yourself first" by Troy Hunt

* "WebApp Penetration Testing" by Sunny Wear

The End

Thank you!

