Deploying Security Testing Practice

by Artem Vasiuk



In testing since 2004
Test Manager in Danish company Scalepoint
From Ukraine. Live in Denmark

Love snowboarding



Why Security?

Increasing number of breaches
Numerous tools for detection and attacks
New area for personal development

High stakes due to GDPR




Source: https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
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https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

The Beginning

Let’s do it! But what’s next step?
Should we do it or delegate to professionals?
How do we get time for it?

Can robots do the stuff for us?




The Situation

What is the driver?

e Management Decision

e Need Driven
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e Personal Initiative

e Career Opportunity




The Situation

How do you organise the process?

e One-man battle
e Team Work

e Corporate Goal




The Situation

Where do you focus?

e Secure Frameworks and Components
 Automated Testing Tools

e Professional Consultants



The Situation

When do you act?

 Non-Functional Testing of Features

* Design Review and Code Review

* Penetration Testing per Release

e Definition of Done




Can | help you?

OWASP.org

 Jop 10 Vulnerabilities

UWUHSP

Open Ueb Application
Security Project

e Testing Checklist
 App Sec Verification Standard (aka ASVS)

o Software Assurance Maturity Model (aka SAMM)
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OWASP Top 10
Application Security Risks — 2017

Top 10 Vulnerabillities

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker's hostile data can trick the
interpreter into executing unintended commands or accessing data without proper authorization.

Application functions related to authentication and session management are often implemented
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users' identities temporarily or permanently.

Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra
protection, such as encryption at rest or in transit, and requires special precautions when
exchanged with the browser.

Many older or poorly configured XML processors evaluate external entity references within XML
documents. External entities can be used to disclose internal files using the file URI handler,
internal file shares, internal port scanning, remote code execution, and denial of service attacks.

Restrictions on what authenticated users are allowed to do are often not properly enforced.
Attackers can exploit these flaws to access unauthorized functionality and/or data, such as access
other users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure
default configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured
HTTP headers, and verbose error messages containing sensitive information. Not only must all
operating systems, frameworks, libraries, and applications be securely configured, but they must
be patched and upgraded in a timely fashion.

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user-supplied data using a
browser API that can create HTML or JavaScript. XSS allows attackers to execute scripts in the
victim's browser which can hijack user sessions, deface web sites, or redirect the user to
malicious sites.
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Testing Checklist

Testing for Reflected Cross site scripting (OTG-INPVAL-001)
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This article is part of the new OWASP Testing Guide v4.
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When a web application is vulnerable to this type of attack, it will pass unvalidated input sent through requests back to the client. The common modus operandi of the attack includes a design step, in which the attacker creates and tests an offending URI, a social

o her victims to load this URI on their browsers, and the eventual execution of the offending code using the victim's browser.
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Verify that the forgotten password function and other recovery paths do not reveal the current password and that the new password is not sent in clear text to the user. A one time password reset link should be
used instead.
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SAMM Overview

Business Functions

Governance

Security Practices
Strategy & Education &
Metrics Guidance
Policy &

Compliance

Construction

SAMM

Software
Development

Security
Requirements

Threat
Assessment

Secure
Architecture

Verification Deployment

Design Security Environment
Review Testing Hardening
Code Vulnerability Operational
Review Management Enablement



Improve Efficiency

Automated Sec Scanning tools

Burp Suite, Zed Attack Proxy (ZAP), AppScan
SonarQube (Java, C#, JS... +DependencyChecker)

Security test data in Automated tests



Scanning Setup
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Challenges

"Who would even hack us? People are nice!"

"We have firewall (https, kaspersky, ) to protect us!”

"We have Michael. He is responsible for Security"
"I have no time for learning"
"Security is technical, so do it in your Technical backlog"

"Ok, ok...But let’s do release now and improve Security later"



* The Web Application Hacker's Handbook

e Kingpin: How One Hacker Took Over the

Billion-Dollar Cybercrime Underground
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HOW ONE HACKER TOOK OVER THE
BILLION-DOLLAR CYBERCRIME UNDERGROUND
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KEVIN POULSEN,

SENIOR EDITOR, WIRED.COM




Pluralsight course

* "Hack yourself first" by Troy Hunt

* "WebApp Penetration Testing" by Sunny Wear



The End

Thank you!



