
Mats Bryntse
Founder, @bryntum

Expect the unexpected
Dealing with JavaScript errors in modern web apps

>>

Who is Mats Bryntse?

• From Stockholm

• Founder of Bryntum

• Gantt & Scheduling JS UI components

• Web dev tools (testing, monitoring)

• @bryntum

• www.bryntum.com

!

http://www.bryntum.com

JavaScript error handling 101

What’s a JavaScript error?

• JavaScript errors are unhandled exceptions in your code base

• Or in the frameworks you use

• Doesn’t matter where errors happen, poor user impression

• With JS codebases in the size of MBs, cannot ignore error handling + logging

• Good news - it’s easy 😀

When a web site error happens, you as a dev see…

What does the user see when there is a JS error?

Nothing

Two scenarios for the end user:

• Error is captured by you. User notified

• Or……

• Nothing happens for user, will probably try same action again.

• If you’re really lucky, user will contact you ✉ 📞

Live demo of an error

👍

Beware of ‘Script error.’ messages

• Happens for scripts on external domains

• No message or callstack

• Fix: Add crossorigin=“anonymous” to the script tag

<script crossorigin=“anonymous” src="https://unpkg.com/react.production.min.js"></script>

Making an error logger in < 10 minutes

1. Create single table db

• date, message, file, line, callstack etc

CREATE TABLE `error` (
 `msg` char(60),
 `callstack` char(1000),
 …
) ENGINE=InnoDB DEFAULT
CHARSET=utf8

2. PHP script to receive error data
and store it in DB

<?php

// LOG TO DB 
$link = getLink(); 
 
$command = "call insert_error('$msg', ‘$url', ‘$stack’, …);
  
$result = mysqli_query($link, $command); 

 

3. Setup client side logging

• Log message, file, line, stack etc..

• Add any extra meta relevant for your
debugging (userId/name/…)

// Poor mans JS error logger

window.onerror = (msg) => {
 new Image().src = `log.php?msg={msg}`;
}

throw new Error("Ooops");

Live demo: logging an error

Manual error logging, things to consider

• Store error logs in a database on a non-production server

• Throttle logging on client side + server side

• Probably we only care about the first error on a page

How do JavaScript bugs relate to testing?

Let your users help you

• Not every SaaS company can afford a full time QA department

• Your users will eventually encounter bugs in production

• Users === “Smart monkey testers”

• How users trigger bugs is valuable data which we can harvest

• Ideally, a session crash would generate a runnable test case

The bug fix cycle

Bug life cycle

Fix

Occurrence
ℹ

Investigate

Reproduce

Report
🔎

🔄

✅

Developers need context to fix a bug

Debug context wish list

1. Error message
2. File / line number
3. Call stack
4. Screenshot
5. Step by step description
6. Log of user / browser session activity
7. Seeing the user reproduce the error
8. Live breakpoint in production environment
9. Live breakpoint on my localhost, in my fav browser

Once you have breakpoint, it’s all downhill!

Error
 at Object.module.exports.request (/home/vagrant/src/kumascript/lib/kumascript/caching.js:366:17)
 at attempt (/home/vagrant/src/kumascript/lib/kumascript/loaders.js:180:24)
 at ks_utils.Class.get (/home/vagrant/src/kumascript/lib/kumascript/loaders.js:194:9)
 at /home/vagrant/src/kumascript/lib/kumascript/macros.js:282:24
 at /home/vagrant/src/kumascript/node_modules/async/lib/async.js:118:13
 at Array.forEach (native)
 at _each (/home/vagrant/src/kumascript/node_modules/async/lib/async.js:39:24)
 at Object.async.each (/home/vagrant/src/kumascript/node_modules/async/lib/async.js:117:9)
 at ks_utils.Class.reloadTemplates (/home/vagrant/src/kumascript/lib/kumascript/macros.js:281:19)
 at ks_utils.Class.process (/home/vagrant/src/kumascript/lib/kumascript/macros.js:217:15)

“A live breakpoint is worth a 1000 callstacks”

Common approaches to error handling

• Pros: Cheap

• Cons: Bugs live forever

Do nothing

Email ping pong

Email ping pong - Enterprise version

Error in web app

Reports to own support Your company

User realises it’s an error

01010
10110
11110

User Dear User,

/Depressed dev.

Can’t reproduce,
need more info.

Sincerely yours,

• Pros: None

• Cons: Slow, expensive, demoralizing,
frustrated end user

Roll your own logger

Roll your own logger

• Pros: Simple, get basic error info. Awareness

• Cons: Lots of code to scan through

 Using a 3rd party logger

• Pros: Tons of data, call stack, console logs, ajax, user activity.
Enables you to search for the error

• Cons: Slow, tons of data to parse, manual work, code to review

Quick poll

Evolution of monitoring tools

First generation tools

• Sentry, Rollbar, TrackJS, RayGun, NewRelic, StackHunter…

• Basic error logging

• Call stack + context

• Timeline

• Dashboard

• Statistics

• Focus on raising awareness, data gathering

Second generation tools

• LogRocket, SessionStack, FullStory…

• Generates video of the user session

• Replay & view the error

• Focus on showing you the bug, not just data gathering

• Bonus: videos help reveal bad UX design

But, to reproduce the bug we would like a test case.

🤔

RootCause - debugging JavaScript errors in 2018

DEMO TIME!

Cuts 99% of communication out

• No need for QA / end users to email devs with crash reports, step by step

• No need for devs to notify QA that bug is fixed

Technical details

• Recorder: 100% vanilla JS

• Screenshots: HTML2Canvas

• Dashboard: Ext JS

• Replay studio powered by Siesta

>> Fast forward into context

Fix

Occurrence
ℹ

Investigate

Reproduce

Report
🔎

🔄

✅

Privacy concerns / GDPR…?

Sign up for free here: https://app.therootcause.io

Summing up:

• Fix your external script tags. Never see “Script error”. Ever.

• Your users can help you find bugs with the right tool

• Don’t rely on users reporting bugs manually

• Automate your error reporting

http://app.therootcause.io

@bryntum

Questions?

@the_rootcause
Join discussion at slido.com with #test2018

http://slido.com

