
Put Your TestOps
Shoes on!

Improving Quality
by Process
Automation

Dawid
Pacia

It should be smart sentence here.
But I couldn’t find any...

Dawid Pacia

THE TRADITIONAL MODEL OF SOFTWARE
TESTING

TESTS

QUALITY ASSESSMENT

RUN TESTS

SYSTEM UNDER TEST

ANALYSIS
PASS? FAIL?

by Seth Eliot

TEST RESULTS

➜ Facebook users send on average over
31 million messages and view 2.77
million videos every minute

➜ Twitter users generate 347,222
Tweets each minute – or 21 million
Tweets per hour

➜ Google provides search results for
over 1 billion search queries each day

➜ Amazon deploys new software to
production every 11.6 seconds.

The times have changed...

Let’s start with the first
set of slides

1.
TRANSITION

HEADLINE

EXPOSURE
CONTROL

TEST CASES AND
MONITORS

THE TESTOPS MODEL OF SOFTWARE
TESTING

EXPOSED USERS
AND SYSTEMS

SYSTEM UNDER TEST

PRODUCTION USERS
AND SYSTEMS

ACTIVE
MONITORS

ANALYSIS

QUALITY ASSESSMENT

PRODUCTION
USAGE

TELEMETRY DATA

KPIs / PATTERNS

by Seth Eliot

CONTINUOUS
BUILD

CODE CHANGE /
FIX

SCM
(Git, Svn,
Bazaar ;)

NEW BUILD
(Ant, Maven,
Gradle, etc.)

CI TOOLS
(Jenkins,
Bamboo,
Travis CI,
TeamCity,
Ansible,

etc.)

CONTINUOUS
VALIDATION

TEST
ENVIRONMENTS

BUILD

DEPLO
YMENT

TEST RESULTS

CONTINUOUS
DELIVERY

PRODUCTION
ENVIRONMENTS

CONTINUOUS
MONITORING

MONITORING
(Kibana, Grafana,

Scalyr, Cacti,
Amazon

CloudWatch, etc.)

SYNTHETIC /
SEMANTIC

MONITORING

➜ Synthetic monitoring (or semantic
monitoring) runs a subset of an
application's automated tests against
the live production system on a regular
basis.

Continuous Monitoring

➜ Integration with DevOps
infrastructure

➜ Which tests to run and when
➜ No need to stand up the whole

system to test

TestOps: What Does This
Mean?

WHY SHOULD
WE CARE SO

MUCH?

FAKAPY
● Zgłaszanie błędu w komentarzy w Jirze - 500 klientom nie działało menu

nawigacyjne po aplikacji
● Dobrze zorganizowane glow w Gicie - pull req, praca miedzy zespolami
● Szkiletet
● Jak pisac kod (python)
● Nazwy obiektow!
● Re-uzywalnosc kodu
● Korzystanie z paczek
● Pop
● Pliki readme
● Jak unikac zlych praktyk
● Konwencja komitowanie (a nie ‘fixed small issue’)
● Konsekwencja pracy przez 2-mc na wlasnym branchu
● Dlaczego nie tylko produkt powinien byc testowany, ale również same

testy

BUT IN A WORLD OF FALSE...

False
Negatives

False
Positives

The test is marked as Passed,
when the functionality is

working

The test is marked as Failed,
when the functionality is not

working.

False
Negatives

False
Positives

...YOU CAN ENCOUNTER SOMETHING WORSE

Flaky
Tests

TESTS FAILING
INTERMITTENTLY

R
IS

K
V

A
LU

E
1) CONTINUOUS: VALUE vs RISK

PLAN CODE BUILD TEST RELEASE DEPLOY OPERATE

COLLABORATION

AGILE DEVELOPMENT

CONTINUOUS INTEGRATION

CONTINUOUS DELIVERY

DEVOPS

Dawid Pacia

“More automatically,
more continuously,

more risky...”

2) Pains of “high tech” companies

➜ Lack of time:

○ No TDD/BDD/XP, lack of Unit tests

○ No documentation

○ Not enough testers!

➜ Event-driven development (CES, IoT World, etc.)

➜ Chaotic environment with constantly changing

priorities (on a daily basis)

3) “PICK TWO” → NEVERENDING DILEMMA...

Speed vs Quality Speed vs Quality → Speed and Quality → Quick Wins

Quick-win 1

Quick/Ad hoc
manual testing

TEST
MANAGEMENT

PROJECT
MANAGEMENT

COMMUNICATION &
NOTIFICATIONS

CI/CD

CRASH REPORTING &
LOGGING

+

Toolset and collaboration

Quick win 1

Quick/Ad hoc
manual testing

TESTS BUCKET

TEST SUITES

TEST CASES

(aka. TEST CYCLE !?)

FW

BEiOS

ANDROID

SUCCESSFUL
PRODUCT!PRODUCT &

COMPONENTS

TESTS BUCKET

TEST SUITES

TEST CASES

(aka. TEST CYCLE !?)

FW

BEiOS

ANDROID

IL TUQ A Y

TU A

FW

BEiOS

ANDROID

SUCCESSFUL
PRODUCT!PRODUCT &

COMPONENTS

Quick win 2

Project workflow
management

Project issue/ticket workflow

Project issue/ticket workflow

Tests

CODE CHANGE /
FIX

Git

NEW BUILD

Jenkins

JIRA
ORGANIZER

○○○

Project issue/ticket workflow

CLICK

Quick win 3

Mobile app
handling

Number of Occurrences and the number of Devices (treated as Users) for a chosen period
We have following monthly stats:
iOS = 44.4 WAU
Android = 12.3k WAU

99.5% crash free sessions is a bottom line that we shouldn't exceed. Let's approximate it:
➜ iOS: Less than 44.4k * 0.005 = 222 crashed unique devices per week
➜ Android: Less than 12.3k * 0.005 = 61.5 crashed unique devices per week

Crashed devices per week (CDpW) as a threshold between Critical and Blocker:
➜ > CDpW = Blocker
➜ > 50% * CDpW = Critical
➜ > 20% * CDpW = High
➜ < 20% * CDpW = Middle

One more condition as Blocker is: Occurences/Devices per week > 20 (i.e. an average
customer experiences this crash 3 times each day).

Lets calculate statistics

Android

Jenkins CI

iOS FW

Elasticsearch

Logstash

Jobs

Kibana SlackJIRA

Crashlytics

Logs

Data

Don’t forget about resolved bugs!
They are like your wife or girlfriend -

they love to bring back the same problem after a long time...

Dawid Pacia

But...what is
developer’s role in

TestOps approach?

➜ TestOps provides a unique aspect for

automation and quality assurance

➜ It plays a vital role to integrate the automated

testing with Dev team for CI

➜ Don’t focus on tools! Focus on problem solving

➜ Invest your time in continuous improvement

➜ Incorporate “quick-wins” approach into your

everyday work

➜ Explore and investigate!

Takeaways

Thanks!
Any questions?
You can find me at:

● / paciadawid

● / @dawid_py

